Главная - Очистка воды
Чем опасно самостоятельное выполнение заземления в квартире (переделка TN-C в TN-C-S). Классификация систем заземления: какие типы бывают и в чем их особенности? Система заземления tn

Существует несколько вариантов работы электрических сетей в зависимости от их системы заземления. Кратко охарактеризуем имеющиеся системы заземления электрических сетей класса напряжения до и выше 1000 В.

Сети класса напряжения до 1000 В

Система TN-C

В электрической сети данной конфигурации нейтральный вывод питающего силового трансформатора глухо заземлен , то есть электрически соединен с заземляющим контуром на трансформаторной подстанции. На всем протяжении от подстанции к потребителю нулевой и защитный проводник объединены в один общий – так называемый .

Данная сеть предусматривает «зануление» электроприборов - присоединение нулевого и защитного проводника к совмещенному проводнику PEN. Данная сеть является устаревшей и реализуется только в промышленности и в уличном освещении.

Зануление электроприборов в быту запрещено из-за опасности появления опасного потенциала на зануленных корпусах, поэтому такая сеть в старых постройках эксплуатируется исключительно в качестве двухпроводной – используется только нулевой и фазный проводники.

Данная сеть отличается от предыдущей тем, что совмещенный проводник PEN разделяется в определенной точке, как правило, после входа в здание - на нулевой проводник N и защитный заземляющий проводник PE.

Сеть конфигурации TN-C-S наиболее распространенная в наше время. Данная сеть является одной из рекомендуемых систем и может быть реализована на новых объектах.

Система заземления TN-С:


1 - заземлитель нейтрали (средней точки) источника питания, 2 - открытые проводящие части, N - нулевой рабочий проводник - нулевой рабочий (нейтральный) проводник, PE - защитный проводник - защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов), PEN - совмещенный нулевой защитный и нулевой рабочий проводники - совмещенный нулевой защитный и нулевой рабочий проводники.

Конфигурация данной электрической сети отличается от предыдущих тем, что предусматривает разделение совмещенного проводника еще на питающей подстанции, на всем протяжении линии нулевой и заземляющий проводники разделены.

Данная система применяется при строительстве новых объектов и является наиболее предпочтительной из всех имеющихся. Но в связи с более высокой стоимостью реализации (необходимостью прокладки отдельного защитного проводника), часто все же отдается предпочтение сети конфигурации TN-C-S.

Система заземления TN-S:



Система TT

В данном случае также имеет глухое заземление, но электропроводка конечного потребителя заземляется от индивидуального заземляющего контура, не имеющего электрической связи с заземленной нейтралью трансформатора.

В основном это сети TN-C, в которых не предусмотрено заземление в принципе, а также сети TN-C-S, которые не удовлетворяют требованиям ПУЭ относительно механической прочности совмещенного проводника, а также наличия его повторных заземлений.

Система заземления TT:




1 - заземлитель нейтрали (средней точки) источника питания, 2 - открытые проводящие части, 3 - заземлитель открытых проводящих частей, N - нулевой рабочий проводник - нулевой рабочий (нейтральный) проводник, PE - защитный проводник - защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов).

Нейтрали силовых трансформаторов в сети данной конфигурации не заземлены, то есть, изолированы от заземляющего контура подстации. Защитный заземляющий проводник может подключаться к заземляющему контуру на подстанции либо непосредственно у потребителя к имеющемуся заземляющему контуру.

Система заземления IT:


1 - сопротивление заземления нейтрали источника питания (если имеется), 2 - заземлитель, 3 - открытые проводящие части, 4 - заземляющее устройство, PE - защитный проводник - защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов).

Данная система заземления применяется для электроснабжения объектов, к которым предъявляются особые требования относительно безопасности и надежности. Это помещения электроустановок электростанций, подстанций, опасных производств, в частности горнодобывающей промышленности, взрывоопасные помещения и др.

Электроустановки и сети класса напряжения 6, 10 и 35 кВ работают в большинстве случаев . В связи с отсутствие заземления нейтрали замыкание одной из фаз на землю не является коротким замыканием и не отключается защитой.

В случае наличия замыкания в сети данной конфигурации допускается ее непродолжительная работа, как правило, на время отыскания поврежденного участка и отделения его от сети. То есть при наличии замыкания в сети изолированной нейтралью потребители не теряют питание, а продолжают работать в прежнем режиме, за исключением поврежденного участка, в котором наблюдается неполнофазный режим – обрыв одной из фаз.

Опасность данной сети заключается в том, что в случае однофазного замыкания происходит растекание токов на землю от точки падения провода на 8 м на открытом пространстве и 4 м в помещениях. Человек, попавший в зону действия растекания данных токов, будет смертельно поражен электрическим током.


Нейтраль сетей 6 и 10 кВ может быть заземлена через и дугогасящие катушки, которые позволяют компенсировать токи замыкания на землю. Данная система заземления сетей применяется в случае наличия больших токов замыкания на землю, которые могут быть опасны для электрооборудования данных сетей. Такая система заземления электрических сетей называется резонансной либо компенсированной .

Электрические сети класса напряжения 110 и 150кВ имеют эффективную систему заземления. При данной системе заземления большинство силовых трансформаторов электрической сети имеет глухое заземление нейтрали , а некоторые трансформаторы имеют нейтраль, разземленную через разрядники или ограничители перенапряжения . Выборочное разземление нейтралей позволяет снизить .


В результате расчетов, выбирается, на каких подстанциях следует разземлить нейтрали трансформаторов, чтобы обеспечить максимально эффективную работу электрической сети. Разземление нейтралей через разрядники или ОПН выполняется для того, чтобы защитить обмотку силовых трансформаторов от .

Сети класса напряжения 220- 750 кВ работают в режиме глухозаземленной нейтрали, то есть в таких сетях все выводы нейтральных обмоток силовых трансформаторов и автотрансформаторов имеют электрическое соединение с .

Применяться эта схема стала еще с 40-ых годов 20-го века. Впервые она была применена в европейских странах, где и используется до сих пор. У нас, в России, сейчас стоит точно такая же задача. Задача эта состоит вот в чем: проектируя и выполняя монтаж проводки на новых объектах в однофазных сетях, требуется применять кабельные линии, имеющие три жилы (фазная, нейтральная и жила PE), для сетей же, имеющих три фазы, такой кабель должен иметь пять рабочих жил (фазы А, В, С, нейтраль и PE). Все это должно начинаться от источника энергии вплоть до самой последней розетки потребителя. Иными словами, у такой системы заземления имеется два нейтральных провода (рабочая и защитная).

Такие требования не являются пустым звуком: подобные рекомендации, предписывающие переход от заземления по схеме TN-C на систему TN-S, или TN-C-S, обусловлены общеизвестным документом, именуемым ПУЭ (в пункте 1.7.132). Быстрый переход на эту систему невозможен по причине большой затратности и дороговизны такой системы.

Преимущества

Вот какие плюсы имеет данная схема заземления:

  1. Нет надобности контролировать состояние заземляющего контура;
  2. Значительно более высокая надежность и безопасность системы по сравнению с другими;
  3. Эта система позволяет использовать и дифавтоматы с целью повышения защищенности;
  4. Такая система практически полностью исключает появление наводок высокой частоты на потребительские силовые линии.

Недостаток ее только один – большая стоимость при переделке.

Попытаюсь подоходчивей объяснить замечательность этого перехода. Для того, чтобы это выяснить, надо рассмотреть его электросхему. Она схожа с традиционным вариантом электроснабжения, в котором, кроме фазных проводов, имеется и провод нуля, с той огромной разницей, что для него не нужно дополнительное заземление ни на «N»-линии, ни на «PE»-линии, а выполняется она лишь на первом источнике тока. Все это дает возможность выполнения разделения рабочих функций и функций защиты по разным питающим шинам. Подобная схема становится очень актуальной при полном отсутствии контроля состояния контуров защитного заземления.

Такая система стала главной рабочей заземляющей системой, применимой к зданиям, содержащим информационное и телекоммуникационное оборудование. В этой системе обеспечено полное отсутствие обратных токов РЕ-проводника , а это значительно уменьшает возможность возникновения помех электромагнитного типа. Во время эксплуатации системы, нужно, лишь, следить за тем, чтобы соблюдалась принадлежность проводов РЕ и N. Для максимального снижения помех, лучше всего, иметь встроенную (либо пристроенную) ТП.

Зданиям, в которых имеется, либо возможна установка значительного числа оборудования, обрабатывающего информацию или любого другого оборудования, которое чувствительно к помехам, требуется особенный контроль проводов защиты и проводов рабочего нуля от точки подачи питания для предотвращения, либо сведения к минимуму воздействий электромагнитного типа. Проводники эти ни в коем случае не подлежат объединению, иначе, нагрузочный ток, в особенности сверхток, что возникает во время однофазного КЗ, пойдет кроме нулевого рабочего провода, по защитному нулю и приведет к помехам.

Наконец, есть смысл рассказать об . Дело в том, что соединение оборудования с заземлителями обеспечивают именно они. Если требуется заземление непосредственного типа, то оно монтируется под специальную гайку. В розетке же, такое соединение происходит через специальные «заземляющие ножи». Розетки евростандарта от старых «совдеповских» отличны по диаметру гнезда и наличием специальных «ножей заземления».

Вывод

Отсюда мы видим, что такая система организации заземления значительно более надежна, нежели другие. Именно по этой причине в России стоит вопрос о постепенном переходе именно на эту схему заземления. Надеюсь, я достаточно доходчиво разъяснил суть и принципы заземляющей системы TN-S и ни у кого не возникнет вопросов по ее полезности, безопасности и необходимости перехода на нее всей России.

В распределительных электрических сетях российского жилого фонда на протяжении нескольких десятилетий устаревшая система заземления TN-C стала массово заменяться на более современную (и гораздо более безопасную) TN-C-S. По сути последняя из них представляет собой симбиоз систем TN-C и TN-S и отличается от прочих такой конструктивной особенностью, как парное «расщепление» PEN-проводника, осуществляемое на участке разветвления общей распределительной сети на отдельные, идущие к потребителям. В результате, образуется 2 проводника:

  • РЕ (защитный);
  • N (рабочий нулевой).

При этом схема электроснабжения с такой системой заземления в распределительном подъездном щитке принимает следующий вид:

При использовании однофазного питания (и соответствующем счетчике, установленном внутри коробки щитка) на внутренний квартирный щиток уходит 3-жильный кабель (соответственно с фазой С, защитным проводником РЕ и рабочим нулевым проводником N) – на схеме обозначенный красной, голубой и салатовой линиями.
При наличии трехфазного питания (и счетчика) используется уже 5-жильный кабель, в котором добавляется пара проводов А (обозначен желтым цветом) и В (темно-зеленый цвет).

Таким образом, в отличие от «совдеповской» TN-C системы, TN-C-S предполагает использование еще и не устаревших, а новых евророзеток, обязательно снабжаемых внутренними клеммами заземления.

Что касается упоминавшегося «расщепления» одного проводника на пару, то рабочий (N) по-прежнему служит для выполнения основной функции – подачи на различные устройства потребителя электропитания. В то же время дополнительный, защитный РЕ замыкается на корпуса электроприборов и бытовой техники (посудомоечных и стиральных машин, электрических плит, микроволновых печей и т.д.).

Однако где именно разделять общий РЕ-N проводник? Вопрос этот не праздный, и потому требует отдельного тщательного рассмотрения с пояснениями.

Разделение PEN проводника в системе TN-C-S

На входе электросети общего пользования с улицы в крупные здания обязательно устанавливается ВРУ (вводно-распределительное устройство). Конструктивно оно выглядит примерно следующим образом:

Как видно из рисунка, стандартный ВРУ (в данном случае – 0,4кВ) содержит совокупность:

  • различного защитного оборудования ( , автовыключателей, предохранителей и пр.);
  • электрооборудования преобразовательного и передаточного назначения (трансформаторов, рубильников, сборных шин и др.);
  • электронных приборов измерения и учета (счетчиков, вольтметров, амперметров и т.д.),компактно закрепленных внутри металлического шкафа. Именно в нем целесообразно провести и разделение общего проводника на их пару PE и N.

При этом общая наглядная картина при использовании системы TN-C-S примет следующий вид:

А поскольку проводник будет разделяться внутри ВРУ, схематически это будет выполнено так, как показано на фото ниже:

Для разделения потребуется использовать две соответствующие шины:

  • нижнюю, идущую на «землю», т.е. PE;
  • и верхнюю, защитную, т.е. N, установленную на изоляторах.

Вводный кабель (с общим проводником) будет запитан на шину заземления. Та же, в свою очередь, будет соединена с верхней шиной жесткой перемычкой (по возможности изготовленной из того же материала и примерно такой же ширины, как и обе шины, либо выполненной в виде провода, сечением равному проводнику PEN).

Тогда схема соединения примет следующий внешний вид:

Кроме того, нижнюю шину, РЕ, потребуется заземлить повторно – иначе говоря, вывести на заземляющий контур самого здания.

Важно! Электротехнические размерные параметры проводника, идущего к месту его разделения, могут быть различными, но в сечении, ни в коем случае, не падать нижней предельной нормы:для медного провода – не менее 10 мм2; для алюминиевого – не менее 10 мм2.

При этом все вышеперечисленное является не просто рекомендациями, а прямыми требованиями ПУЭ.

Достоинства системы заземления TN-C-S

Следует отметить, что система TN-C-S в электросетях России на сегодня является не только наиболее распространенной, но и, пожалуй, самой перспективной. Благодаря использованию УЗО (устройств, обеспечивающих автоматическое защитное отключение), ее уровень безопасности гораздо более высок, чем все еще во множестве оставшихся (в основном в «хрущевках» и «брежневках») старых систем TN-C, хотя и ниже, чем у современных TN-S.

Однако именно возможность легко и без лишних финансовых и временных затрат осуществить симбиоз устаревших и передовых систем заземления в единое целое и позволяет отнести ее к оптимальным на данный момент для нашего государства.

  1. TN-C – отличается отсутствием разделения защитного и рабочего проводников по всей протяженности системы. Это делает ее максимально простой и экономичной – но в определенных ситуациях принужденной к короткому замыканию и отключению питания. При этом следует помнить, что, скажем, в ванных комнатах выравнивание потенциалов не допускается в принципе.
  2. TN-C-S – как уже было подробно описано выше – лишена этого недостатка. При этом переход на нее с TN-C очень прост (и сложность заключается разве что в необходимости модернизировать расположенный в каждом подъезде стояк).
  3. Наконец, TN-S – благодаря изначально полному разделению защитных и рабочих «нулевок» — устанавливается во всем мире в новом жилом фонде из-за максимальной степени безопасности. Однако система эта достаточно дорога – и именно поэтому для установки в зданиях старой постройки проигрывает «промежуточной» TN-C-S.

Недостатки системы TN-C-S

Фактически, он всего один – и состоит в в том случае, если PEN-проводник вследствие каких-либо форс-мажорных обстоятельств оборвется, и корпуса электроприборов окажутся под напряжением.

Вывод

Несмотря на «отсутствие совершенства» системы TN-C-S, переход в зданиях с абсолютно устаревшим заземлением типа TN-C на нее более чем рекомендуется.

Похожие материалы.

Вопросы безопасного использования электроэнергии продолжают становиться все более актуальными для всего населения. Требования международной электротехнической компании, внедренные в действие нормативными документами в нашей стране, ужесточили правила эксплуатации электротехнического оборудования. После этого действующие с советских времен государственные стандарты с упрощенными правилами заземления электрических схем для жилых домов пересмотрены.

Однако большая масса зданий продолжает эксплуатироваться по старой схеме TN-C. На переоборудование ее по системе TN-C-S требуются огромные материальные затраты, выполнить все это в масштабах государства не просто. Поэтому такая работа проводится постепенно, но планомерно.

Подключение корпусов электроприборов к нулю

Этот способ называют занулением. Он широко использовался как защитный прием при выполнении кратковременных работ со старым электроинструментом, оборудованным металлическим корпусом со слабой изоляцией. Современная промышленность такие устройства не выпускает.

Принцип работы: в случае нарушения изоляции и появления потенциала фазы на корпусе возникает ток короткого замыкания, который быстро отключается защитными автоматами.

Опасности зануления:

    отсутствие точно налаженных защитных устройств в случае повреждения прибора не исключает появление опасного потенциала у человека, контактирующего с корпусом;

    иногда «электрики» совершают ошибки, путая фазу с нулем. В этом случае фаза будет преднамеренно подведена на корпус;

    в случаях повреждения нуля схема не работает.

Подключение корпусов электроприборов к металлическим строительным конструкциям

Водопроводные сети, магистрали водяного отопления, корпуса шахт лифтового оборудования и некоторые другие элементы стационарно расположены в земле. Народные «умельцы» используют их для заземления.

Риски метода:

    электрический контакт с землей не контролируется;

    в случае ремонта трубопроводов цепь разрывается;

    вмонтированные участками пластиковые трубы работают изоляторами;

    при появлении потенциала на корпусе прибора может пострадать случайный человек в любой квартире, дотронувшийся до батареи отопления, водопроводного крана и оказавшийся на пути прохождения тока.

Самовольное расщепление PEN проводника на этажном щитке

На первый взгляд этот метод кажется наиболее оптимальным решением. Электропроводка квартиры переделывается по трехжильной схеме для подключения ноля и РЕ проводника в строгом соответствии с правилами. Остается только подключиться к контуру заземления и «домашний электрик» самостоятельно делает расщепление на этажном распределительном щитке.

Это опасно тем, что:

    грубо нарушается утвержденный и выполненный проект электропроводки всего здания;

    создаются предпосылки электротравм, угрозы повреждения оборудования;

    при возникновении любых неисправностей в электропроводке здания представители коммунальных служб могут «назначить» владельца квартиры виновным, что повлечет скандалы, наложение штрафов, проверки различными комиссиями и другие неприятности;

    электрики ЖКХ, занимающиеся обслуживанием здания, при работах не будут учитывать особенности проведенных доработок. Это может быть причиной аварийных ситуаций.

Осуществить процесс перевода электрооборудования на безопасную схему электропитания для владельцев коттеджей и частных домов не так уж и сложно. Для этого достаточно , желательно из современных модульных конструкций и подключиться к нему по системе ТТ.

Жителям многоэтажных домов сложнее правильно решить этот вопрос. Расщепление PEN проводника на две составляющие магистрали — это задача энергоснабжающей организации. Она будет выполнена, но в различные сроки.

К этому моменту во время проведения ремонтов помещений необходимо внутри квартиры заменить старую проводку новой трехжильной и подготовиться к переводу схемы на систему TN-C-S. Выведенный из квартиры PE проводник оставить в готовности к подключению электрикам ЖКХ.

Система заземления определяет конфигурацию использующейся электросети. В буквенном обозначении указывается тип использования проводов (земля, ноль), их совмещение либо отдельное прохождение, вариант заземления потребителя, нейтрали. Тип заземления электроустановки (открытых ее частей) указывает вторая буква международной классификации. Характер заземления самого источника обозначает первая буква аббревиатуры. Две системы IT, TT не имеют подсистем, третья TN делится на три подкатегории – C-S, S, C. Латинскими символами в этих системах обозначены:

Первая буква:

  • T – Глухозаземленная нейтраль
  • I - Изолированная нейтраль
  • Вторая буква:

  • T – Непосредственное присоединение открытых проводящих частей к земле (защитное заземление )
  • N - Непосредственное присоединение открытых проводящих частей к глухозаземленной нейтрали источника питания (защитное зануление )
  • Последующие буквы:

  • S – Нулевой рабочий и защитный проводник работают раздельно на всем протяжении системы
  • C – Нулевой рабочий и защитный проводники объединены на всем протяжении системы
  • C – S – Нулевой рабочий и защитный проводники объединены на части протяжении системы
  • Согласно ГОСТ, нулевые проводники обозначаются маркировками:

  • совмещенные защитный, рабочий нулевой проводники – PEN
  • нулевой защитный проводник – PE
  • нулевой рабочий проводники – N
  • Принцип работы заземления

    При нормальной работе системы электроустановки ее отдельные элементы не должны находиться под напряжением для безопасности пользователей. В жилом здании такими частями установок являются:

  • корпуса бытовых приборов (металлические)
  • электрощиты, силовые шкафы
  • корпуса электрооборудования
  • Для обеспечения безопасности их соединяют с контуром заземления, возникший потенциал не причиняет вреда человеку, уходит в землю, обладающую значительной массой. Незначительное воздействие электрического тока при этом пользователь почувствует, однако, оно будет безопасно для организма.


    Типовые квартиры, частные коттеджи, построенные недавно, имеют заземление во всех розетках. В старом жилом фонде эти системы безопасности в электропроводке отсутствуют. Современные вилки бытовой аппаратуры, электроприборов так же имеют три контакта, поэтому, целесообразен перевод старых домов (там где это технически возможно) c системы питания TN-C на систему питания TN-C-S.

    Дома подключаются к промышленным источникам тока (трансформаторные подстанции), имеющим заземлители в обязательном порядке. Современные нормы СНиП так же обязывают застройщика обеспечить заземлением ВРУ (распределительные устройства ввода). На практике этими устройствами являются распределительные щиты, от которых необходимо обеспечить качественное соединение с вилками бытовых приборов. Причем, использовать для этих целей трубопроводы инженерных систем в большинстве случаев не удастся в силу следующих причин:

  • по трубам транспортируются воспламеняющиеся жидкости
  • современная разводка выполняется полимерными материалами, не проводящими электричество
  • Согласно европейским стандартам, к домам могут подходить три провода однофазной сети:

  • фазный проводник L
  • рабочий ноль N
  • защитный нулевой проводник РЕ
  • В трехфазной сети вместо одного проводника L присутствует три фазы L3, L2, L1. Это простейшая TN-S схема, обеспечивающая надежное заземление, в каждую квартиру приходит трехжильный провод с желто-зеленым проводником, подключенным в этажном щитке к РЕ проводу.

    В схеме TN-C-S разводка по квартирам осуществляется аналогичным образом, однако, при вводе в дом ноль дополнительно заземляется.

    TN система

    При «глухом» заземлении нейтрали источника с одновременным присоединением его открытых элементов к ней же защитными нулевыми проводами система именуется TN. В этом случае нейтраль присоединяется к заземляющему контуру возле подстанции, а, не к дугогосящему реактору.

    Подсистема TN-C

    Подсистема TN-C использует объединенные в общий провод нулевые проводники (защитный + рабочий), что обеспечивает простую схему, экономию материалов проводки. Недостатками являются:
  • отсутствие PE проводника
  • розетки жилого дома остаются без защитного заземления
  • В этом варианте вместо заземления, обеспечивающего безопасность касания к корпусу прибора под напряжением, используется защита обнуления – срабатывание автомата при резком увеличении тока в цепи (КЗ). Рабочий нулевой проводник в этой схеме обозначается PEN, присутствует в схеме TN-C. Слабым местом схемы является участок от квартиры до ввода в дом – нарушение целостности цепи (отгорание провода, подключение автомата, предохранителя в разрыв) гарантирует фазу на корпусе, несчастный случай при случайном контакте.

    Система заземления этого типа вынуждает дополнительно использовать схемы зануления. При КЗ (случайное попадаете фазы на корпус электроприбора) срабатывает автомат, происходит отключение энергии. Технология энергоснабжения присутствует в большинстве жилищ вторичного фонда, постепенно заменяется более совершенными схемами. Уравнивание потенциалов в этом случае запрещено в санузлах.

    Подсистема TN-S

    В подсистеме TN-S улучшена безопасность зданий, оборудования, пользователей за счет разделения защитного, рабочего проводников по всей длине. Однако, это приводит к увеличению бюджета строительства, так как, необходима прокладка трехжильного либо пятижильного кабеля от ТП для однофазных, трехфазных сетей, соответственно.

    Подсистема TN-C-S

    Подсистема TN-C-S является гибридной, в ней нулевые проводники (защитный + рабочий) объединены на расстоянии от подстанции до ввода в здание, расщепляются внутри него с использованием повторного заземления PE провода, N провода. Эта система заземления является универсальной – рекомендована при обустройстве новостроек, применяется для модернизации эксплуатируемых TN-C подсистем несложным улучшением подъездных стояков.

    ТТ система

    Отличительной особенностью схемы защиты открытых токопроводящих частей источника, которую использует система заземления TT, является независимая от заземлителя нейтраль. Система разрешена в России недавно, применяется лишь в случаях невозможности обеспечения электробезопасности домов, павильонов, мобильных зданий с помощью TN системы. Это обусловлено необходимостью повторного заземления высокого качества (обычно, модульно-штыревые конструкции в комбинации с УЗО), к контуру которого распределительный щит подключается непосредственно на объекте.

    IT схема

    Особенность схемы заземления IT состоит в заземленных открытых токопроводящих частях источника электроэнергии. Нейтраль в этих схемах безопасности либо заземлена через высокое сопротивление приборов, либо изолирована от земли, что позволяет свести к минимуму электромагнитные поля, наведенные токи. Схема оптимально подходит для учреждений медицины, лабораторий, использующих высокоточную аппаратуру. Не рекомендуется для жилых домов.

     


    Читайте:



    Завершился вывод войск ссср из афганистана

    Завершился вывод войск ссср из афганистана

    В 1987 году в Афганистане начала осуществляться политика национального примирения, принятая и одобренная на Пленуме ЦК НДПА в декабре 1986 года....

    Новое направление: инноватика Сложно ли учиться на инноватике

    Новое направление: инноватика Сложно ли учиться на инноватике

    Предоставляют массу возможностей для выбора профессионального направления. Многие из предметов и направлений обозначены достаточно непонятными...

    К чему снится племянница

    К чему снится племянница

    Учеными было установлено, что чаще всего, людям снится о любимых родственниках сон. Племянник, привидевшийся во время ночного отдыха, может...

    Репейник: толкование сновидения

    Репейник: толкование сновидения

    Сонник репейник толкует как символ стремления к особой защищенности от возможных неприятностей. Сон, в котором вы видели одиноко стоящий куст,...

    feed-image RSS