Главная - Очистка воды
Единицы измерения заряда. Закон Кулона. Закон кулона и его применение в электротехнике

Зако́н Куло́на - это закон, описывающий силы взаимодействия между точечными электрическими зарядами.

Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.

Иначе: Два точечных заряда в вакууме действуют друг на друга с силами, которые пропорциональны произведению модулей этих зарядов, обратно пропорциональны квадрату расстояния между ними и направлены вдоль прямой, соединяющей эти заряды. Эти силы называются электростатическими (кулоновскими).

Важно отметить, что для того, чтобы закон был верен, необходимы:

    точечность зарядов - то есть расстояние между заряженными телами много больше их размеров - впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;

    их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца , действующая на другой движущийся заряд;

    взаимодействие в вакууме .

Однако с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.

В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:

где - сила, с которой заряд 1 действует на заряд 2; - величина зарядов; - радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами - ); - коэффициент пропорциональности. Таким образом, закон указывает, что одноимённые заряды отталкиваются (а разноимённые - притягиваются).

В СГСЭ единица измерения заряда выбрана таким образом, что коэффициент k равен единице.

В Международной системе единиц (СИ) одной из основных единиц является единица силы электрического тока ампер , а единица заряда - кулон - производная от него. Величина ампера определена таким образом, что k = c 2 ·10 −7 Гн /м = 8,9875517873681764·10 9 Н ·м 2 /Кл 2 (или Ф −1 ·м). В СИ коэффициент k записывается в виде:

где ≈ 8,854187817·10 −12 Ф/м - электрическая постоянная .

Тема 1.1 ЭЛЕКТРИЧЕСКИЕ ЗАРЯДЫ.

Раздел 1 ОСНОВЫ ЭЛЕКТРОДИНАМИКИ

1. Электризация тел. Понятие о величине заряда.

Закон сохранения заряда.

2. Силы взаимодействия между зарядами.

Закон Кулона.

3. Диэлектрическая проницаемость среды.

4. Международная система единиц в электричестве.

1. Электризация тел. Понятие о величине заряда.

Закон сохранения заряда.

Если две поверхности привести в плотное соприкосновение, то возможен переход электронов с одной поверхности на другую, при этом на этих поверхностях появляются электрические заряды.

Это явление называется ЭЛЕКТРИЗАЦИЕЙ. При трении площадь плотного соприкосновения поверхностей увеличивается, увеличивается и величина заряда на поверхности – такое явление называют ЭЛЕКТРИЗАЦИЕЙ ТРЕНИЕМ.

В процессе электризации происходит перераспределение зарядов, в результате которого обе поверхности заряжаются равными по величине, противоположными по знаку зарядами.

Т.к. все электроны имеют одинаковые заряды (отриц.) е = 1,6 10Кл, то для того, чтобы определить величину заряда на поверхности (q), необходимо знать, сколько электронов в избытке или недостатке на поверхности (N) и заряд одного электрона.

В процессе электризации новые заряды не появляются и не исчезают, а только происходит их перераспределение между телами или частями тела, поэтому суммарный заряд замкнутой системы тел остается постоянным, в этом и заключается смысл ЗАКОНА СОХРАНЕНИЯ ЗАРЯДА.

2. Силы взаимодействия между зарядами.

Закон Кулона.

Электрические заряды взаимодействуют между собой, находясь на расстоянии, при этом одноименные заряды отталкиваются, а разноименные – притягиваются.

Впервые выяснил опытным путем отчего зависит сила взаимодействия между зарядами французский ученый Кулон и вывел закон, названный законом КУЛОНА. Закон фундаментальный т.е. основан на опытах. При выводе этого закона Кулон использовал крутильные весы.

3) k – коэффициент, выражающий зависимость от окружающей среды.

Формула закона Кулона.

Сила взаимодействия между двумя неподвижными точечными зарядами прямо пропорциональны произведению величин этих зарядов и обратно пропорциональна квадрату расстояний между ними, и зависит от среды, в которой находятся эти заряды, и направлена вдоль прямой, соединяющей центры этих зарядов.

3. Диэлектрическая проницаемость среды.

Е - диэлектрическая проницаемость среды, зависит от окружающей заряды среды.

Е = 8,85*10 - физическая постоянная, диэлектрическая проницаемость вакуума.

Е – относительная диэлектрическая проницаемость среды, показывает во сколько раз сила взаимодействия между точечными зарядами в вакууме больше чем в данной среде. В вакууме самое сильное взаимодействие между зарядами.


4. Международная система единиц в электричестве.

Основной единицей для электричества в системе «СИ» является сила тока в 1А, все остальные единицы измерения являются производными от 1Ампера.

1Кл – количество электрического заряда, переносимого заряженными частицами через поперечное сечение проводника при силе тока в 1А за 1с.

Тема 1.2 ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

1. Электрическое поле – как особый вид материи.

6. Связь разности потенциалов с напряженностью электрического поля.

1. Электрическое поле – как особый вид материи.

В природе как вид материи существует электромагнитное поле. В разных случаях электромагнитное поле проявляет себя по - разному, так например около неподвижных зарядов проявляет себя только электрическое поле, которое называют электростатическим. Около подвижных зарядов можно обнаружить как электрическое, так и магнитное поля, которые в совокупности представляют ЭЛЕКТРОМАГНИТНЫЕ ПОЛЯ.

Рассмотрим свойства электростатических полей:

1) Электростатическое поле создается неподвижными зарядами, обнаружить такие поля можно

с помощью пробных зарядов (небольшой по величине положительный заряд), т.к. только на них электрическое поле оказывает силовое действие, которое подчиняется закону Кулона.

2. Напряженность электрического поля.

Эл.поле как вид материи обладает энергией, массой, распространяется в пространстве с конечной скоростью и теоретических границ не имеет.

Практически считается, что поля нет если оно не оказывает заметного действия на пробные заряды.

Так как обнаружить поле можно с помощью силового действия на пробные заряды, то основной характеристикой электрического поля является напряженность.

Если в одну и ту же точку электрического поля вносить разные по величине пробные заряды, то между действующей силой и величиной пробного заряда прямая пропорциональная зависимость.

Коэффициентом пропорциональности между действующей силой и величиной заряда является напряженность Е.

Е = -формула расчета напряженности электрического поля, если q = 1 Кл, то | E | = | F |

Напряженность является силовой характеристикой точек электрического поля, т.к. она численно равна силе, действующей на заряд в 1 Кл в данной точке электрического поля.

Напряженность – величина векторная, вектор напряженности по направлению совпадает с вектором силы, действующей на положительный заряд в данной точке электрического поля.

3. Линии напряженности электрического поля. Однородное электрическое поле.

Для того, чтобы наглядно можно было изображать электрическое поле, т.е. графически, используют линии напряженности электрического поля. Это такие линии, иначе называемые силовыми линиями, касательные к которым по направлению совпадают с векторами напряженности в точках электрического поля через которые эти линии проходят,

Линии напряженности обладают следующими свойствами:

1) Начинаются на полож. зарядах, заканчиваются – на отрицательных, или начинаются на положител. зарядах и уходят в бесконечность, или приходят из бесконечности и заканчиваются на положительных зарядах..

2) Эти линии непрерывны и нигде не пересекаются.

3) Густота линий (кол-во линий на единицу площади поверхности) и напряженность электрического поля находятся в прямой и пропорциональной зависимости.

В однородном электрическом поле напряженность во всех точках поля одинакова, графически такие поля изображаются параллельными линиями на равном расстоянии друг от друга. Такое поле можно получить между двумя параллельными плоскими заряженными пластинами на маленьком расстоянии друг от друга.

4. Работа по перемещению заряда в электрическом поле.

Поместим в однородное электрическое поле электрический заряд. Со стороны поля на заряд будут действовать силы. Если заряд перемещать, то может совершаться работа.

Совершенная работа на участках:

А = q E d - формула расчета работы по перемещению заряда в электрическом поле.

Вывод: Работа по перемещению заряда в электрическом поле от формы траектории не зависит, а она зависит от величины перемещаемого заряда (q) , напряженности поля (Е), а также от выбора начальной и конечной точек перемещения (d).

Если заряд в электрическом поле перемещать по замкнутому контуру, то совершаемая работа будет равна 0. Такие поля называются потенциальными полями. Тела в таких полях обладают потенциальной энергией, т.о. электрический заряд в любой точке электрического поля обладает энергией и совершаемая работа в электрическом поле равна разности потенциальных энергий заряда в начальной и конечной точках перемещения.

5. Потенциал. Разность потенциалов. Напряжение.

Если в данную точку электрического поля помещать разные по величине заряды, то потенциальная энергия заряда и его величина находятся в прямой пропорциональной зависимости.

-(фи) потенциал точки электрического поля

Потенциал является энергетической характеристикой точек электрического поля, т.к. он численно равен потенциальной энергии заряда в 1 Кл в данной точке электрического поля.

На равных расстояниях от точечного заряда потенциалы точек поля одинаковы. Эти точки образуют поверхность равного потенциала, и такие поверхности называются эквипотенциальными поверхностями. На плоскости это окружности, в пространстве – это сферы.

Напряжение

Формулы расчета работы по перемещению заряда в электрическом поле.

1В – напряжение между точками электрического поля при перемещении в которых заряда в 1Кл совершается работа в 1 Дж.

Формула, устанавливающая связь между напряженностью электрического поля, напряжением и разностью потенциалов.

Напряженность численно равна напряжению или разности потенциалов между двумя точками поля взятыми вдоль одной силовой линии на расстоянии 1м. Знак (-) означает, что вектор напряженности всегда направлен в сторону точек поля с уменьшающимся потенциалом.

Основной закон взаимодействия электрических зарядов был найден Шарлем Кулоном в 1785 г. экспериментально. Кулон установил, что сила взаимодействия между двумя небольшими заряженными металлическими шариками обратно пропорциональна квадрату расстояниямежду ними и зависит от величины зарядови:

где -коэффициент пропорциональности .

Силы, действующие на заряды , являются центральными , то есть они направлены вдоль прямой, соединяющей заряды.

Закон Кулона можно записать в векторной форме :,

где -вектор силы, действующей на заряд со стороны заряда,

Радиус-вектор, соединяющий заряд с зарядом;

Модуль радиус-вектора.

Сила, действующая на заряд со стороныравна,.

Закон Кулона в такой форме

    справедлив только для взаимодействия точечных электрических зарядов , то есть таких заряженных тел, линейными размерами которых можно пренебречь по сравнению с расстоянием между ними.

    выражает силу взаимодействия между неподвижными электрическими зарядами, то есть это электростатический закон.

Формулировка закона Кулона :

Сила электростатического взаимодействия между двумя точечными электрическими зарядами прямо пропорциональна произведению величин зарядов и обратно пропорциональна квадрату расстояния между ними .

Коэффициент пропорциональности в законе Кулоназависит

    от свойств среды

    выбора единиц измерения величин, входящих в формулу.

Поэтому можно представить отношением,

где -коэффициент, зависящий только от выбора системы единиц измерения ;

Безразмерная величина, характеризующая электрические свойства среды, называется относительной диэлектрической проницаемостью среды . Она не зависит от выбора системы единиц измерения и равна единице в вакууме.

Тогда закон Кулона примет вид:,

для вакуума ,

тогда -относительная диэлектрическая проницаемость среды показывает, во сколько раз в данной среде сила взаимодействия между двумя точечными электрическими зарядами и, находящимися друг от друга на расстоянии, меньше, чем в вакууме.

В системе СИ коэффициент , и

закон Кулона имеет вид :.

Это рационализированная запись закона К улона.

Электрическая постоянная, .

В системе СГСЭ ,.

В векторной форме закон Кулона принимает вид

где -вектор силы, действующей на заряд со стороны заряда ,

Радиус-вектор, соединяющий заряд с зарядом

r –модуль радиус-вектора .

Всякое заряженное тело состоит из множества точечных электрических зарядов, поэтому электростатическая сила, с которой одно заряженное тело действует на другое, равна векторной сумме сил, приложенных ко всем точечным зарядам второго тела со стороны каждого точечного заряда первого тела.

1.3.Электрическое поле. Напряженность.

Пространство, в котором находится электрический заряд, обладает определенными физическими свойствами .

    На всякий другой заряд, внесенный в это пространство, действуют электростатические силы Кулона.

    Если в каждой точке пространства действует сила, то говорят, что в этом пространстве существует силовое поле.

    Поле наряду с веществом является формой материи.

    Если поле стационарно, то есть не меняется во времени, и создается неподвижными электрическими зарядами, то такое поле называется электростатическим.

Электростатика изучает только электростатические поля и взаимодействия неподвижных зарядов.

Для характеристики электрического поля вводят понятие напряженности . Напряженность ю в каждой точке электрического поля называется вектор , численно равный отношению силы, с которой это поле действует на пробный положительный заряд, помещенный в данную точку, и величины этого заряда, и направленный в сторону действия силы.

Пробный заряд , который вносится в поле, предполагается точечным и часто называется пробным зарядом.

- Он не участвует в создании поля, которое с его помощью измеряется.

Предполагается, что этот заряд не искажает исследуемого поля, то есть он достаточно мал и не вызывает перераспределения зарядов, создающих поле.

Если на пробный точечный заряд поле действует силой, то напряженность.

Единицы напряженности:

В системе СИ выражение для поля точечного заряда :

В векторной форме:

Здесь – радиус-вектор, проведенный из зарядаq , создающего поле, в данную точку.

Таким образом,векторы напряженности электрического поля точечного заряда q во всех точках поля направлены радиально (рис.1.3)

- от заряда, если он положительный, «исток»

- и к заряду, если он отрицательный «сток»

Для графической интерпретации электрического поля вводят понятие силовой линии или линии напряженности . Это

    кривая , касательная в каждой точке к которой совпадает с вектором напряженности .

    Линия напряженности начинается на положительном заряде и заканчивается на отрицательном.

    Линии напряженности не пересекаются, так как в каждой точке поля вектор напряженности имеет лишь одно направление.

Закон Кулона количественно описывает взаимодействие заряженных тел. Он является фундаментальным законом, то есть установлен при помощи эксперимента и не следует ни из какого другого закона природы. Он сформулирован для неподвижных точечных зарядов в вакууме. В реальности точечных зарядов не существует, но такими можно считать заряды, размеры которых значительно меньше расстояния между ними. Сила взаимодействия в воздухе почти не отличается от силы взаимодействия в вакууме (она слабее менее чем на одну тысячную).

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Ш. Кулоном в 1785 г. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами .

На основании многочисленных опытов Кулон установил следующий закон:

Сила взаимодействия двух неподвижных точечных электрических зарядов в вакууме прямо пропорциональна произведению их модулей и обратно пропорциональна квадрату расстояния между ними. Она направлена вдоль прямой, соединяющей заряды, и является силой притяжения, если заряды разноименные, и силой отталкивания, если заряды одноименные.

Если обозначить модули зарядов через |q 1 | и |q 2 |, то закон Кулона можно записать в следующей форме:

\[ F = k \cdot \dfrac{\left|q_1 \right| \cdot \left|q_2 \right|}{r^2} \]

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц.

\[ k=\frac{1}{4\pi \varepsilon _0} \]

Полная формула закона Кулона:

\[ F = \dfrac{\left|q_1 \right|\left|q_2 \right|}{4 \pi \varepsilon_0 \varepsilon r^2} \]

\(F \) - Сила Кулона

\(q_1 q_2 \) - Электрический заряд тела

\(r \) - Расстояние между зарядами

\(\varepsilon_0 = 8,85*10^{-12} \) - Электрическая постоянная

\(\varepsilon \) - Диэлектрическая проницаемость среды

\(k = 9*10^9 \) - Коэффициент пропорциональности в законе Кулона

Силы взаимодействия подчиняются третьему закону Ньютона: \(\vec{F}_{12}=\vec{F}_{21} \) . Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках.

Электрический заряд обычно обозначается буквами q или Q .

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

    Существует два рода электрических зарядов, условно названных положительными и отрицательными.

    Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

    Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Отметим, чтоб выполнялся закон Кулона необходимо 3 условия:

  • Точечность зарядов - то есть расстояние между заряженными телами много больше их размеров.
  • Неподвижность зарядов . Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд.
  • Взаимодействие зарядов в вакууме .

В Международной системе СИ за единицу заряда принят кулон (Кл) .

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А . Единица силы тока (Ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Пример 1

Задача

Заряженный шарик приводят в соприкосновение с точно таким же незаряженным шариком. Находясь на расстоянии \(r = 15 \) см, шарики отталкиваются с силой \(F = 1 \) мН. Каков был первоначальный заряд заряженного шарика?

Решение

При соприкосновении заряд разделится ровно пополам (шарики одинаковые).По данной силе взаимодействия можем определить заряды шариков после соприкосновения (не забудем, что все величины надо представить в единицах СИ – \(F = 10^{-3} \) Н, \(r = 0.15 \) м):

\(F = \dfrac{k\cdot q^2}{r^2} , q^2 = \dfrac{F\cdot r^2}{k} \)

\(k=\dfrac{1}{4\cdot \pi \cdot \varepsilon _0} = 9\cdot 10^9 \)

\(q=\sqrt{\dfrac{f\cdot r^2}{k} } = \sqrt{\dfrac{10^{-3}\cdot (0.15)^2 }{9\cdot 10^9} } = 5\cdot 10^8 \)

Тогда до соприкосновения заряд заряженного шарика был вдвое больше: \(q_1=2\cdot 5\cdot 10^{-8}=10^{-7} \)

Ответ

\(q_1=10^{-7}=10\cdot 10^{-6} \) Кл, или 10 мкКл.

Пример 2

Задача

Два одинаковых маленьких шарика массой по 0,1г каждый подвешены на непроводящих нитях длиной \(\displaystyle{\ell = 1\,{\text{м}}} \) к одной точке. После того как шарикам были сообщены одинаковые заряды \(\displaystyle{q} \) , они разошлись на расстояние \(\displaystyle{r=9\,{\text{см}}} \) . Диэлектрическая проницаемость воздуха \(\displaystyle{\varepsilon=1} \) . Определить заряды шариков.

Данные

\(\displaystyle{m=0,1\,{\text{г}}=10^{-4}\,{\text{кг}}} \)

\(\displaystyle{\ell=1\,{\text{м}}} \)

\(\displaystyle{r=9\,{\text{см}}=9\cdot 10^{-2}\,{\text{м}}} \)

\(\displaystyle{\varepsilon = 1} \)

\(\displaystyle{q} - ? \)

Решение

Поскольку шарики одинаковы, то на каждый шарик действуют одинаковые силы: сила тяжести \(\displaystyle{m \vec g} \), сила натяжения нити \(\displaystyle{\vec T} \)и сила кулоновского взаимодействия (отталкивания) \(\displaystyle{\vec F} \). На рисунке показаны силы, действующие на один из шариков. Поскольку шарик находится в равновесии, сумма всех сил, действующих на него, равна 0. Кроме того, сумма проекций сил на оси \(\displaystyle{OX} \) и \(\displaystyle{OY} \)равна 0:

\(\begin{equation} {{\mbox{на ось }} {OX} : \atop { \mbox{ на ось }} {OY} : }\quad \left\{\begin{array}{ll} F-T\sin{\alpha} & =0 \\ T\cos{\alpha}-mg & =0 \end{array}\right. \quad{\text{или}}\quad \left\{\begin{array}{ll} T\sin{\alpha} & =F \\ T\cos{\alpha} & = mg \end{array}\right. \end{equation} \)

Решим совместно эти уравнения. Разделив первое равенство почленно на второе, получим:

\(\begin{equation} {\mbox{tg}\,}= {F\over mg}\,. \end{equation} \)

Так как угол \(\displaystyle{\alpha} \) мал, то

\(\begin{equation} {\mbox{tg}\,}\approx\sin{\alpha}={r\over 2\ell}\,. \end{equation} \)

Тогда выражение примет вид:

\(\begin{equation} {r\over 2\ell}={F\over mg}\,. \end{equation} \)

Сила \(\displaystyle{F} \)по закону Кулона равна: \(\displaystyle{F=k{q^2\over\varepsilon r^2}} \). Подставим значение \(\displaystyle{F} \)в выражение (52):

\(\begin{equation} {r\over 2\ell}={kq^2\over\varepsilon r^2 mg}\, \end{equation} \)

откуда выразим в общем виде искомый заряд:

\(\begin{equation} q=r\sqrt{r\varepsilon mg\over 2k\ell}\,. \end{equation} \)

После подстановки численных значений будем иметь:

\(\begin{equation} q= 9\cdot 10^{-2}\sqrt{9\cdot 10^{-2}\cdot 1 \cdot 10^{-4}\cdot 9,8\over 2\cdot 9\cdot 10^9\cdot 1}\, {{\text{Кл}}}=6.36\cdot 10^{-9}\, {{\text{Кл}}}\,. \end{equation} \)

Предлагается самостоятельно проверить размерность для расчетной формулы.

Ответ: \(\displaystyle{q=6,36\cdot 10^{-9}\,{\text{Кл}}\,.} \)

Ответ

\(\displaystyle{q=6,36\cdot 10^{-9}\,{\text{Кл}}\,.} \)

Пример 3

Задача

Какую работу надо совершить, чтобы перенести точечный заряд \(\displaystyle{q=6\,{\text{нКл}}} \) из бесконечности в точку, находящуюся на расстоянии \(\displaystyle{\ell = 10\,{\text{см}}} \) от поверхности металлического шарика, потенциал которого \(\displaystyle{\varphi_{\text{ш}}=200\,{\text{В}}} \), а радиус \(\displaystyle{R = 2\,{\text{см}}} \)? Шарик находится в воздухе (считать \(\displaystyle{\varepsilon=1} \)).

Данные

\(\displaystyle{q=6\,{\text{нКл}}=6\cdot 10^{-9}\,{\text{Кл}}} \)\(\displaystyle{\ell=10\,{\text{см}}} \)\(\displaystyle{\varphi_{\text{ш}}=200\,{\text{В}}} \)\(\displaystyle{R=2\,{\text{см}}} \) \(\displaystyle{\varepsilon = 1} \) \(\displaystyle{A} \) - ?

Решение

Работа, которую необходимо совершить, чтобы перенести заряд из точки с потенциалом \(\displaystyle{\varphi_1} \) в точку с потенциалом \(\displaystyle{\varphi_2} \) , равна изменению потенциальной энергии точечного заряда, взятому с обратным знаком:

\(\begin{equation} A=-\Delta W_n\,. \end{equation} \)

Известно, что \(\displaystyle{A=-q(\varphi_2-\varphi_1) } \) или

\(\begin{equation} A=q(\varphi_1-\varphi_2) \,. \end{equation} \)

Поскольку точечный заряд первоначально находится на бесконечности, то потенциал в этой точке поля равен 0: \(\displaystyle{\varphi_1=0} \) .

Определим потенциал в конечной точке, то есть \(\displaystyle{\varphi_2} \) .

Пусть \(\displaystyle{Q_{\text{ш}}} \) – заряд шарика. По условию задачи потенциал шарика известен (\(\displaystyle{\varphi_{\text{ш}}=200\,{\text{В}}} \)) , тогда:

\(\begin{equation} \varphi_{\text{ш}}={Q_{\text{ш}}\over 4\pi\varepsilon_o\varepsilon R}\, \end{equation} \)

\(\begin{equation} {\text{откуда}}\quad Q_{\text{ш}}=\varphi_{\text{ш}}\cdot 4\pi\varepsilon_o\varepsilon R\,. \end{equation} \)

Значение потенциала поля в конечной точке с учетом:

\(\begin{equation} \varphi_2={Q_{\text{ш}}\over 4\pi\varepsilon_o\varepsilon(R+\ell) }= {\varphi_{\text{ш}}R\over (R+\ell) }\,. \end{equation} \)

Подставим в выражение значение \(\displaystyle{\varphi_1} \) и \(\displaystyle{\varphi_2} \) , после чего получим искомую работу:

\(\begin{equation} A=-q{\varphi_{\text{ш}}R\over (R+\ell) }\,. \end{equation} \)

В результате расчетов получим: \(\displaystyle{A=-2\cdot 10^{-7}\,{\text{Дж}}} \) .

Тогда модуль силы взаимодействия между соседними зарядами равен:

\(F = \dfrac{k\cdot q^2}{l^{2}_{1}} =\Delta l\cdot k_{pr} \)

Причем удлинение шнура равно: \(\Delta l = l \).

Откуда величина заряда равна:

\(q=\sqrt{\frac{4\cdot l^3\cdot k_{pr}}{k} } \)

Ответ

\(q=2\cdot l\cdot \sqrt{\frac{l\cdot k_{pr}}{k} } \)

Известно, что каждое заряженное тело имеет электрическое поле. Можно также утверждать, что если есть электрическое по-ле, то есть заряженное тело, которому при-надлежит это поле. Итак, если рядом нахо-дятся два заряженных тела с электриче-скими зарядами, то можно сказать, что каж-дое из них находится в электрическом поле соседнего тела. А в таком случае на первое тело будет действовать сила

F 1 = q 1 E 2 ,

где q 1 — заряд первого тела; E 2 — напря-женность поля второго тела. На второе те-ло, соответственно, будет действовать сила

F 2 = q 2 E 1 ,

где q 2 — заряд первого тела; E 1 — напря-женность поля второго тела.

Электрически заряженное те-ло взаимодействует с элект-рическим полем другого заря-женного тела.

Если эти тела небольшие (точечные), то

E 1 = k . q 1 / r 2 ,

E 2 = k . q 2 / r 2 ,

Силы, действующие на каждое из взаимодействующих заря-женных тел, можно рассчи-тать, зная лишь их заряды и расстояние между ними.

Подставим значения напряженности и получим

F 1 = k . q 1 q 2 / r 2 и F 2 = k . q 2 q 1 / r 2 .

Значение каждой силы выражается лишь через значение зарядов каждого тела и рас-стояние между ними. Таким образом, опре-делять силы, действующие на каждое тело, можно, пользуясь лишь знаниями об элект-рических зарядах тел и расстоянии между ними. На этом основании можно сформу-лировать один из фундаментальных законов электродинамики — закона Кулона .

Закон Кулона . Сила, действующая на неподвижное то-чечное тело с электрическим зарядом в поле другого неподвижного точечного тела с элект-рическим зарядом, пропорциональна произве-дению значений их зарядов и обратно пропор-циональна квадрату расстояния между ними.

В общем виде значение силы, о которой идет речь в формулировке закона Кулона , можно записать так:

F = k . q 1 q 2 / r 2 ,

В формуле для расчета силы взаимодей-ствия записаны значения зарядов обоих тел. Поэтому можно сделать вывод, что по мо-дулю обе силы равны. Тем не менее, по направлению — они противоположные. В слу-чае если заряды тел одноименные, тела от-талкиваются (рис. 4.48). Если заряды тел раз-ноименные, то тела притягиваются (рис. 4.49). Окончательно можно записать:

F̅ 1 = - F̅ 2 .

Записанное равенство подтверждает спра-ведливость III закона динамики Ньютона для электрических взаимодействий. Поэтому в одной из распространенных формулиро-вок закона Кулона говорится, что

сила взаи-модействия двух заряженных точечных тел пропорциональна произведению значений их за-рядов и обратно пропорциональна квадрату расстояния между ними.

Если заряженные тела находятся в ди-электрике, то сила взаимодействия будет зависеть от диэлектрической проницаемости этого диэлектрика

F = k . q 1 q 2 / ε r 2 .

Для удобства расчетов, базирующихся на законе Кулона, значение коэффициента k записывают иначе:

k = 1 / 4 πε 0 .

Величина ε 0 называется электрической по-стоянной . Ее значение вычисляется в соот-ветствии с определением:

9 . 10 9 Н.м 2 /Кл 2 = 1 / 4πε 0 ,

ε 0 = (1 / 4π) . 9 . 10 9 Н.м 2 /Кл 2 = 8,85 . 10 -12 Кл 2 /Н.м 2 . Материал с сайта

Таким образом, закон Кулона в общем случае можно выразить формулой

F = (1 / 4πε 0 ) . q 1 q 2 / ε r 2 .

Закон Кулона является одним из фунда-ментальных законов природы. На нем бази-руется вся электродинамика, и не отмечено ни единого случая, когда бы нарушался закон Кулона . Существует единственное ог-раничение, которое касается действия за-кона Кулона на различных расстояниях. Счи-тается, что закон Кулона действует на рас-стояниях больше 10 -16 м и меньше несколь-ких километров.

При решении задач необходимо учиты-вать, что закон Кулона касается сил вза-имодействия точечных неподвижных заря-женных тел. Это сводит все задачи к задачам о взаимодействии неподвижных заряженных тел, в которых применяется два положения статики:

  1. равнодействующая всех сил, действую-щих на тело, равна нулю;
  2. сумма моментов сил равна нулю.

В подавляющем большинстве задач на применение закона Кулона достаточно учи-тывать лишь первое положение.

На этой странице материал по темам:

  • Элзапишите формулу закона кулона

  • Закон кулона реферат

  • Доклад по физике на тему закон кулона

 


Читайте:



Завершился вывод войск ссср из афганистана

Завершился вывод войск ссср из афганистана

В 1987 году в Афганистане начала осуществляться политика национального примирения, принятая и одобренная на Пленуме ЦК НДПА в декабре 1986 года....

Новое направление: инноватика Сложно ли учиться на инноватике

Новое направление: инноватика Сложно ли учиться на инноватике

Предоставляют массу возможностей для выбора профессионального направления. Многие из предметов и направлений обозначены достаточно непонятными...

К чему снится племянница

К чему снится племянница

Учеными было установлено, что чаще всего, людям снится о любимых родственниках сон. Племянник, привидевшийся во время ночного отдыха, может...

Репейник: толкование сновидения

Репейник: толкование сновидения

Сонник репейник толкует как символ стремления к особой защищенности от возможных неприятностей. Сон, в котором вы видели одиноко стоящий куст,...

feed-image RSS